SOC Estimation with an Adaptive Unscented Kalman Filter Based on Model Parameter Optimization
نویسندگان
چکیده
منابع مشابه
Aerodynamic parameter estimation using adaptive unscented Kalman filter
Purpose – The purpose of this paper is to estimate aerodynamic parameters accurately from flight data in the presence of unknown noise characteristics. Design/methodology/approach – The introduced adaptive filter scheme is composed of two parallel UKFs. At every time-step, the master UKF estimates the states and parameters using the noise covariance obtained by the slave UKF, while the slave UK...
متن کاملadaptive setting of scaling parameter in unscented kalman filter based on interactive multiple modes
this paper studies the use of unscented kalman filters (ukf) to estimate nonlinear dynamics and, specifically, adaptive determination of scaling parameters in these filters. due to lack of analytic solution and use of numerical methods instead, the computational load of these filters increases drastically. in this paper, a new method is proposed based on interactive multiple models (imm) which ...
متن کاملDoppler and bearing tracking using fuzzy adaptive unscented Kalman filter
The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...
متن کاملUnscented Kalman Filter in Adaptive Neural Model-based Predictive Control
An adaptive model-based predictive control scheme is proposed for non-linear systems. This methodology exploits the non-linear modelling capabilities of nonlinear state-space neural networks and the online weights adjustment by means of an unscented Kalman filter. Results from experiments show evidences on its good tracking performance even when the system’s dynamics change.
متن کاملAdaptive State of Charge Estimation for Li-Ion Batteries Based on an Unscented Kalman Filter with an Enhanced Battery Model
Accurate estimation of the state of charge (SOC) of batteries is one of the key problems in a battery management system. This paper proposes an adaptive SOC estimation method based on unscented Kalman filter algorithms for lithium (Li)-ion batteries. First, an enhanced battery model is proposed to include the impacts due to different discharge rates and temperatures. An adaptive joint estimatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Sciences
سال: 2019
ISSN: 2076-3417
DOI: 10.3390/app9194177